Electrical knowledge

Saturday, November 9, 2019

Electrical Basic information

Charge

The concept of electricity arises from an observation of nature. We observe a force between objects, that, like gravity, acts at a distance. The source of this force has been given the name charge. A very noticeable thing about electric force is that it is large, far greater than the force of gravity. Unlike gravity, however, there are two types of electric charge. Opposite types of charge attract, and like types of charge repel. Gravity has only one type: it only attracts, never repels.

Conductors and insulators

Conductors 

are made of atoms whose outer, or valence, electrons have relatively weak bonds to their nuclei, as shown in this fanciful image of a copper atom. When a bunch of metal atoms are together, they gladly share their outer electrons with each other, creating a "swarm" of electrons not associated with a particular nucleus. A very small electric force can make the electron swarm move. Copper, gold, silver, and aluminum are good conductors. So is saltwater.


There are also poor conductors. Tungsten—a metal used for light bulb filaments—and carbon—in diamond form—are relatively poor conductors because their electrons are less prone to move.
Insulators 

are materials whose outer electrons are tightly bound to their nuclei. Modest electric forces are not able to pull these electrons free. When an electric force is applied, the electron clouds around the atom stretch and deform in response to the force, but the electrons do not depart. Glass, plastic, stone, and air are insulators. Even for insulators, though, electric force can always be turned up high enough to rip electrons away—this is called breakdown. That's what is happening to air molecules when you see a spark.
Semiconductor 

materials fall between insulators and conductors. They usually act like insulators, but we can make them act like conductors under certain circumstances. The most well-known semiconductor material is Silicon (atomic number 14). Our ability to finely control the insulating and conducting properties of silicon allows us to create modern marvels like computers and mobile phones. The atomic-level details of how semiconductor devices work are governed by the theories of quantum mechanics.

Current

Current is the flow of charge.
Charge flows in a current.
Current is reported as the number of charges per unit time passing through a boundary. Visualize placing a boundary all the way through a wire. Station yourself near the boundary and count the number of charges passing by. Report how much charge passed through the boundary in one second. We assign a positive sign to current corresponding to the direction a positive charge would be moving.
Since current is the amount of charge passing through a boundary in a fixed amount of time, it can be expressed mathematically using the following equation:

No comments:

Post a Comment